

**Vidya Pratishthan's Kamalnayan Bajaj
Institute of
Engineering and Technology, Baramati
(An Autonomous Institute)**

Faculty of Science and Technology

Board of Studies
Artificial Intelligence and Data Science

Syllabus

**Second Year B. Tech.
Artificial Intelligence and Data Science
Pattern 2024**

(w.e.f. AY: 2025-26)

Syllabus: Second Year (SY B. Tech.) Artificial Intelligence and Data Science

w.e.f. AY:2025-2026

Course Code	Course Name	Semester-III													
		Teaching Scheme (Hours/Week)			Examination Scheme and Marks							Credit Scheme			
		TH	PR	TUT	Act ivit y	ISE	ESE	TW	PR	O R	Total	TH	PR	TUT	Total
AI24201	Data Structure	03	02	-	10	30	60	-	30	-	130	03	01	-	04
AI24202	Network of Things	03	02	-	10	30	60	-	30		130	03	01	-	04
AI24203	Discrete Mathematics	02	-	02	10	-	60	30	-		100	02	-	01	03
MD240XX	Multi-disciplinary minor	03	02	-	10	30	60	30	-	-	130	03	01	-	04
OE240XX	Open Elective	02	-	-	10	-	60	-	-	-	70	02	-	-	02
HS24211	Environmental Studies	02	-	-	10	-	60	-	-	-	70	02	-	-	02
HS24201	Public Speaking And Aptitude	01	02	-	10	-		30		30	70	01	01	-	02
Total		16	08	02	70	90	360	90	60	30	700	16	04	01	21

Syllabus: Second Year (SY B. Tech.) Artificial Intelligence and Data Science																
w.e.f. AY:2025-2026																
Course Code	Course Name	Semester-IV														
		Teaching Scheme (Hours/Week)			Examination Scheme and Marks								Credits			
		TH	PR	TUT	Act ivit y	ISE	ESE	TW	PR	O R	Total	TH	PR	TUT	Total	
BS24207	Advanced Statistics and Numerical Method	03	-	-	10	30	60	-	-	-	100	03	-	-	03	
AI24211	Data Science	03	02	-	10	30	60	-	30	-	130	03	01	-	04	
AI24212	Database Management System	03	02	-	10	30	60	-	30	-	130	03	01	-	04	
AI24213	Operating System	03	02	-	10	30	60		30	-	130	03	01	-	04	
AI24214	Community Engagement Project	-	04	-	10	-		30	-	30	70	-	02	-	02	
MD240XX	Multi-disciplinary minor	02	02	-	10	-	60	30	-	-	100	02	01	-	03	
AI24215	Python for Visual AI		02	01	10	-	-	30	30	-	70	-	01	01	02	
Total		14	14	01	70	120	300	90	120	30	730	14	07	01	22	

Semester-III

Vidya Pratishthan's
Kamalnayan Bajaj Institute of Engineering and Technology, Baramati
(Autonomous Institute)

AI24201- Data Structures

Teaching Scheme: Theory: 3 Hours/Week Practical: 2 Hour/Week	Credits 04	Examination Scheme: Activity Marks:10 Marks In Sem: 30 Marks End Sem: 60 Marks Practical: 30 Marks
---	-----------------------------	---

Prerequisites: Programming and Problem Solving

Course Objectives:

- To develop logical ability to solve the problems in time efficient way
- To use appropriate data structures and algorithms while solving a problem
- To do the theoretical analysis of the problem to be solved
- To understand the advanced data structures while solving complex problems
- To understand the standard and abstract data representation methods

Course Outcomes (COs): The students will be able to:

CO1: Design an algorithm for searching and sorting algorithms and do the time and space analysis

CO2: Apply basic data structures for solving a problem like expression evaluation

CO3: Develop an algorithm for efficient operations with linear data structures

CO4: Design and Develop algorithmic solutions with nonlinear data structures for time and space efficiency

CO5: Discriminate the usage of different nonlinear data structures for lowering the upper bound

CO6: Apply nonlinear data structures to solve the computationally complex problems

Course Contents

Unit I: Introduction to Algorithms and Complexity Theory (08 Hours)

Searching: linear and binary search algorithm. Searching using key-value in a sequence of records. Insertion, bubble, selection sort algorithms. Sort algorithms on a sequence of records using specified keys. Comparative analysis of various searching and sorting algorithms. Time Complexity Analysis. Characteristics of an algorithm. Analyzing programs. Frequency count. Time and space complexity. Big 'O' Ω , Θ , notation. Best, average and worst cases. Recurrence relations, Solving recurrence relations with Master Method

Unit II: Basic Data Structures (07 Hours)

Stacks and Queues: Stack and queue as ADT. Operations on stack and queue. Implementations using arrays and dynamic memory allocation. Application of stack for expression evaluation, expression conversion. Implementation of stack using queue and vice versa. Recursion and stacks. Problems like maze and knight's tour

Unit III: Linked Data Structures (07 Hour)

Linked List- Singly Linked List(SLL), Stack as SLL, Queue as SLL, Doubly Linked List, Circular Singly Linked List, finding a cycle in SLL, Operations on linked lists: insert, delete, traverse, search etc. Applications of linked list: Representation & manipulations of polynomials/sets using linked list concept

Unit IV: Trees (08 Hour)

Basic terminology. Binary Tree: Properties of a Binary Tree, ADT Binary trees and its representations,

concept of Non- Linear Data Structures, Difference between Linear and Nonlinear data structure, Binary tree traversals (recursive and non-recursive) and various operations. Binary Search Tree(BST): Properties, Insertion and deletion of nodes. Complexity Analysis of all operations, Threaded BST

Unit V: Heaps (05 Hours)

Priority queues and Heap: Priority Queues. Max and Min Heap. Operations on heap, Heapsort. Applications of trees. AVL Trees: Introduction, Properties, Balance Factor, Operations like insert, rotate and delete, Red Black Trees: Properties, Operations like insert, delete and rotate

Unit VI: Graphs (05 Hours)

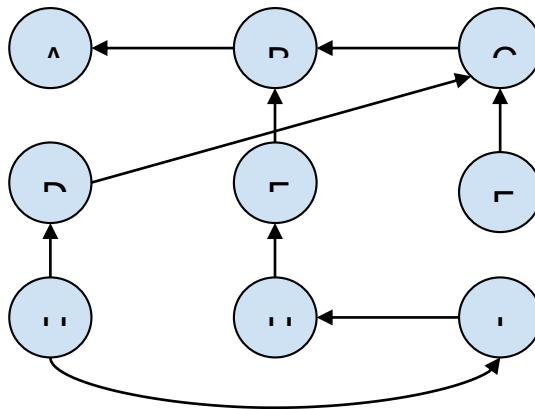
Representation of graphs using adjacency matrix, adjacency list. Implementation of algorithms for traversals; implementing Kruskal's or Prim's or Single source shortest paths using Dijkstra's algorithm. Applications of graphs for problems like shortest path on a map

Text Books:

1. "Fundamentals of Data Structures in C", E. Horowitz, S. Sahni, S. Anderson-freed, Second Edition, 2008, University Press, ISBN 978-81-7371-605-8
2. "Fundamentals of Data Structures in C++", Ellis Horowitz, S. Sahni, D. Mehta, 2nd Edition, 2008, University Press, ISBN-10: 8173716064
3. "An introduction to data structures with Applications", Jean-Paul Tremblay, Paul. G. Soresan, 2nd Edition, 1984, Tata Mc-Graw Hill International Editions, ISBN-0-07-462471- 7

Reference Books:

1. Peter Brass, "Advanced Data Structures", Cambridge University Press, ISBN: 978-1-10743982-5
2. A. Aho, J. Hopcroft, J. Ulman, "Data Structures and Algorithms", Pearson Education, 1998, ISBN-0-201-43578-0.


E-Resources:

1. <https://nptel.ac.in/courses/106102064>
2. <https://archive.nptel.ac.in/courses/106/106/106106127/>
3. https://onlinecourses.nptel.ac.in/noc22_cs26/preview

List of Assignments

1. The mathematical expression, with operator precedence to be solved by computer, is given in infix form, convert it to the postfix form to make your computer understand the precedence and solve the expression.
2. Implement a knight tour of NxN size boards using stack as a data structure to keep track of the visited places.
3. A circular linked list, where the last node points to the first node, a mischievous guy disturbed the list and the last node points to the intermediate node. Write a program to find the intermediate node where last node points also correct the list and print
4. There is k sorted linked lists, each contains n elements, your task is to merge the linked list and return the single sorted linked list in O(nklogk) time

5. Write a program to construct a Binary Search Tree(BST) and find the post order predecessor of given key with a guarantee of preserving the worst case running time $O(\log n)$
6. Write a non-recursive version of finding the least common ancestor(LCA) of any two nodes in the binary search tree and optimize your non recursive search by balancing the tree.
7. Write a program to convert any binary search tree to min heap as a complete binary tree, each node holding a higher than its parent, make a note of not exceeding the $O(n)$ time.
8. The grid of 8×8 size, in which a mouse is located at 1×1 and needs to reach an 8×8 place, finds out the possible unique paths from its own location.
9. Priorities of the processes to be executed in computer are represented in following graph,

Construct the max heap for above represented graph and display the sequence of the executing the processes

10. Write a program to prepare a shortest path tour, in which it visits all the nodes only once except the starting node. You may represent a graph in terms of adjacency matrix storing non zero non negative values at $i \neq j$ if there exists a path.

Teaching Scheme: Theory: 3 Hours/Week Practical: 2 Hour/Week	Credits 04	Examination Scheme: Activity Marks: 10 Marks In Sem: 30 Marks End Sem: 60 Marks Practical: 30 Marks
---	-----------------------------	--

Prerequisites: Programming and Problem Solving

Course Objectives:

- To understand the basic digital electronics and microprocessors.
- To understand the definition and significance of the Internet of Things.
- To gain a comprehensive understanding of various sensors, actuators and the fundamentals of IoT system development using Arduino and Raspberry Pi.
- To introduce the basic fundamentals of big data, data analytics and cloud computing.
- To learn real world application scenarios of IoT along with its societal and economic impact using case studies.

Course Outcomes (COs): The students will be able to:

CO1: Have a thorough understanding of the structure, function and characteristics of computer systems and understand the structure of various number systems and its application in digital design.

CO2: Explain the concept of internet of things and identify the technologies that make up the internet of things.

CO3: Identify and describe different types of sensors, actuators and also develop the IoT applications using Arduino and RaspberryPi.

CO4: Analyze trade-offs in interconnected wireless embedded device networks. Select Appropriate protocols for IoT Solutions.

CO5: Explain the basics concept of Bigdata ,data analytics and cloud computing and its use in IoT

CO6: Identify the application of IoT in automation of commercial and real world examples

Course Contents

Unit I: Fundamentals of Computer Organization & Digital Electronics (07 Hours)

Basic organization of computers & computer Function, classification micro, mini, mainframe and super computer, system bus, I-Cycle, interrupt and class of interrupts, number systems, number conversion, 1's & 2's complement, introduction of microprocessor & microcontroller.

Unit II: Introduction of Internet of Things (06 Hours)

Introduction, definitions & characteristics of IoT, IoT architectures, Challenges, physical & logical design of IoT, Enabling Technologies in IoT, IoT decision framework, Asset management, IoT connectivity and management, Applications of IoT.

Unit III: IoT Physical Devices and Endpoints(06 Hours)

Definition, types of sensors, types of actuators, examples and working, building IoT with Arduino: Arduino–Interfaces-Arduino IDE–Programming. RaspberryPi: Introduction, about the RaspberryPi board: hardware layout, operating systems, and configuration. Programming RaspberryPi with Python.

Unit IV: IoT Systems, Network and Protocols(06 Hours)

Study of RFID, Types of RFID, Wireless networks; wireless Sensor Networking (WSN); cellular Machine-to Machine (M2M) application networks; computer connected to internet; network devices; Device configuration and management; exchange information in real time without human intervention; IoT Protocols, IoT Security & IoT Communication.

Unit V: Data Handling& Analytics: (06 Hours)

Introduction of bigdata, 3V's, Types of data, characteristics of big data, data handling technologies, Flow of data, data acquisition, data storage, introduction to hadoop. Introduction to data Analytics, types of data analytics, Introduction to cloud computing: definition, characteristics, deployment model. Interfacing of NODEMCU with cloud database.

Unit VI: IOT Applications (06 Hours)

IoT Verticals; IoT Hosted Services; IoT Application development, IoT Software providers; Review of various IoT application domains including agriculture, healthcare, manufacturing, device management, and vehicle to vehicle communication and wearable computing devices.

Text Books:

1. Arshdeep Bahga, Vijay Madisetti, "Internet of Things: A hands-on approach", Universities Press, ISBN: 0: 0996025510, 13: 978-0996025515.
2. Olivier Hersistent, David Boswarthick, Omar Elloumi, "The Internet of Things: Key applications and Protocols", Wiley, 2012, ISBN: 978-1-119-99435-0

Reference Books:

1. David Hanes, IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things, Cisco Press, ISBN-13: 978-1-58714-456-1, ISBN-10: 1-58714-456-5, 2017
2. Olivier Hersistent, Omar Elloumi and David Boswarthick, "The Internet of Things: Applications to the Smart Grid and Building Automation", Wiley, 2012, 9781119958345 3.
3. Adrian McEwen, Hakim Cassimally, "Designing the Internet of Things", Wiley, 2014, ISBN: 978-1-118-43063-7

E-Resources:

1. https://onlinecourses.nptel.ac.in/noc22_cs53/preview

List of Assignments

1. Study of Raspberry-Pi/ Beagle board/ Arduino and other microcontroller
2. Write a program using Arduino to control LED (One or more ON/OFF). Or Blinking
3. Create a program that illuminates the green LED if the counter is less than 100, illuminates the yellow LED if the counter is between 101 and 200 and illuminates the red LED if the counter is greater than 200
4. Create a program so that when the user enters 'b' the blue light blinks, 'g' the green light is illuminated 'y' the yellow light is illuminated and 'r' the red light is illuminated
5. Write a program that asks the user for a number and outputs the number squared that is entered.
6. Write a program to control the color of the LED by turning 3 different potentiometers. One will be read for the value of Red, one for the value of Green, and one for the value of Blue.
7. Understanding the connectivity of Raspberry-Pi /Beagle board circuit / Arduino with IR sensor.
Write an application to detect obstacle and notify user using LEDs
8. Write an application to detect gas leakage and notify user using LEDs/buzzer
9. Write an application to detect soil moisture and notify user using LEDs/buzzer
10. Write a program using piezo element and use it to play a tune after someone knocks

AI24203-Discrete Mathematics

Teaching Scheme: Theory: 2 Hours/Week Tutorial: 2 Hours/Week	Credits 03	Examination Scheme: Activity: 10 Marks Term-Work: 30 Marks End-Sem Exam: 60 Marks
---	-----------------------------	--

Prerequisites: Basic Mathematics

Course Objectives:

- To provide students with a solid foundation in the theory and principles of discrete mathematics, including logic, set theory, combinatorics, and graph theory.
- To equip students with the necessary tools and techniques for solving problems related to artificial intelligence and data science, such as algorithm design, complexity analysis, and probability theory.
- To develop students' critical thinking and problem-solving skills through the application of discrete mathematics to real-world problems in artificial intelligence and data science.
- To prepare students for advanced courses in artificial intelligence, machine learning, and data science by laying a strong mathematical foundation in discrete mathematics

Course Outcomes (COs): The students will be able to learn:

CO1: Apply set theory concepts and propositional logic to solve problems involving set operations, logical expressions, and mathematical induction.

CO2: Analyze relations and functions, and evaluate their properties, including equivalence relations and partial orderings.

CO3: Use counting principles, permutations, combinations, and binomial coefficients, to solve complex counting problems and derive combinatorial identities.

CO4: Apply graph and tree algorithms, including shortest paths, spanning trees, and Huffman coding, to solve related problems.

Course Contents

Unit I: Set Theory and Logic (06 Hours)

Sets- Naïve Set Theory (Cartesian Set Theory), Axiomatic Set Theory, Set Operations, Cardinality of set, Principles of inclusion and exclusion. Types of Sets- Bounded and unbounded sets, Countable and uncountable sets, Finite and infinite sets, Countably infinite and uncountably infinite sets, Power set. Propositional Logic- logic, Propositional equivalences, Normal Forms, Application of propositional logic- Translating English sentences, Proof by mathematical induction.

Unit II: Relations and Functions (06 Hours)

Relations and their properties, n-ary relations and their applications, representing relations, closures of relations, equivalence relations, Partial orderings, Partitions, Hasse Diagram, Lattices, Chains and Anti-chains, Transitive closure and Warshall's algorithm.

Functions- Subjective, Injective and Bijective functions, Identity function, Partial function, Invertible function, Constant function, Inverse functions and compositions of functions,

Unit III: Counting Principles (06 Hour)

The Basics of Counting, Rule of Sum and Product, Permutations and Combinations, Binomial Coefficients and Identities, Generalized Permutations and Combinations.

Unit IV: Graph and Trees (06 Hour)

Graph Terminologies, Graph Isomorphism, Connectivity, Euler and Hamiltonian Paths and Circuits, The Handshaking lemma, Single Source Shortest Path-Dijkstra's Algorithm, Planar Graphs and Graph Coloring, Introduction to Trees, Binary Search Tree, Tree Traversal, Decision Tree, Prefix Codes and Huffman Coding, cut sets, Spanning Trees and Minimum Spanning Trees, Kruskal's and Prim's Algorithm, The Max Flow-Min Cut Theorem (Transport Network).

Text Books:

1. C. L. Liu, "Elements of Discrete Mathematics", TMH, ISBN 10:0-07-066913-9.
2. N. Biggs, "Discrete Mathematics", 3rd Ed, Oxford University Press, ISBN 0-19-850717-8

Reference Books:

1. Kenneth H. Rosen, "Discrete Mathematics and its Applications", Tata McGraw-Hill, ISBN 978-0-07-288008-3
2. Bernard Kolman, Robert C. Busby and Sharon Ross, "Discrete Mathematical Structures", Prentice-Hall of India /Pearson, ISBN: 0132078457, 9780132078450.
3. Narsingh Deo, "Graph with application to Engineering and Computer Science", Prentice Hall of India, 1990, 0 – 87692 – 145 – 4.
4. Eric Gossett, "Discrete Mathematical Structures with Proofs", Wiley India Ltd, ISBN:978-81-265-2758-8.
5. Sriram P. and Steven S., "Computational Discrete Mathematics", Cambridge University Press, ISBN 13: 978-0-521-73311-3.

E-Resources:

1. <https://archive.nptel.ac.in/courses/106/106/106106183/>
2. <https://archive.nptel.ac.in/courses/106/105/106105192/>
3. <https://archive.nptel.ac.in/courses/106/103/106103205/>

Semester-IV

Vidya Pratishtan's
Kamalnayan Bajaj Institute of Engineering and Technology, Baramati
(Autonomous Institute)

AI24211- Data Science

Teaching Scheme: Theory: 3 Hours/Week Practical: 2 Hour/Week	Credits 04	Examination Scheme: Activity Marks:10 Marks In Sem: 30 Marks End Sem: 60 Marks Practical: 30 Marks
---	-----------------------------	---

Prerequisites: Discrete Mathematics

Course Objectives:

- To understand the need of Data Science.
- To understand computational statistics in Data Science
- To study and understand data analytics through machine learning algorithms
- To be conversant with time series analytics
- To learn model evaluation techniques
- To empower students with visualization tools and techniques used in data science

Course Outcomes (COs): The students will be able to:

CO1: Apply data pre-processing techniques

CO2: Apply statistics for Data Analytics

CO3: Implement Data Analytics using basic machine learning algorithms

CO4: Implement basic time series analysis techniques

CO5: Analyze and Apply evaluation techniques for the model

CO6: Implement data visualization using visualization tools in Python programming

Course Contents

Unit I: Introduction to Data Science (06 Hours)

Basics and need of Data Science, Applications of Data Science, Relationship between Data Science and Information Science, Business intelligence versus Data Science, Data: Data Types, Data Collection. Data Wrangling, Need of Data wrangling, Methods: Data Cleaning, Data Integration, Data Reduction, Data Transformation, and Data Discretization.

Unit II: Statistical Inference (06 Hours)

Need of statistics in Data Science, Measures of Central Tendency: Mean, Median, Mode, Mid-range. Measures of Dispersion: Range, Variance, Mean Deviation, Standard Deviation. Bayes theorem, Basics and need of hypothesis and hypothesis testing, Pearson Correlation, Sample Hypothesis testing, Chi-Square Tests, t-test.

Unit III: Predictive Data Analytics with Python (06 Hour)

Data Analytic Lifecycle, Analytics Types: Predictive, Descriptive and Prescriptive. Supervised, Unsupervised learning. Regression: Linear Regression, Logistic Regression. Classification: Naïve Bayes, Decision Trees, SVM. Introduction to Scikit-learn, Installations, Dataset, matplotlib, filling missing values, Regression and Classification using Scikit-learn.

Unit IV: Forecasting and Time series Analysis (06 Hour)

Time Series Analysis vs Forecasting, Time Series Analysis-components, data types, stationarity and non-stationarity, Moving Average Methodology, Time series analysis using data science and machine learning, Auto-Regressive model: understanding ARMA and ARIMA.

Unit V: Model Evaluation and Selection (06 Hours)

Metrics for Evaluating Classifier Performance, Holdout Method, cross validation and Random Sub sampling, Parameter Tuning and Optimization, Result Interpretation, Metrics, Confusion matrix, sensitivity, specificity, precision, recall, F-measure, AUC-ROC Curves, Elbow plot.

Unit VI: Data Visualization (06 Hours)

Introduction to Data Visualization, Types of data visualization, Data Visualization Techniques, Tools used in Data Visualization, Challenges to Big data visualization, Visualizing Big Data, Analytical techniques used in Big data visualization, Data Visualization using Python: Line plot, Scatter plot, Histogram, Density plot, Box- plot, Bar plot, Pie chart, Heatmap, etc..

Text Books:

1. David Dietrich, Barry Hiller, "Data Science and Big Data Analytics", EMC Education services, Wiley publication, 2012, ISBN0-07-120413-X.
2. Jaiwei Han, Micheline Kamber, and Jian Pie, "Data Mining: Concepts and Techniques", Elsevier Publishers Third Edition, ISBN: 9780123814791, 9780123814807
3. Thomas Nield, "Essential Math for Data Science", O'Reilly Media Inc., October 2022, ISBN: 9781098102869

Reference Books:

1. EMC Education Services, "Data Science and Big Data Analytics - Discovering, analyzing, visualizing and Presenting Data" 1st Edition Phil Hanna, JSP : Complete Reference, TATA McGraw-Hill Company
2. DT Editorial Services, "Big Data, Black Book", DT Editorial Services, ISBN: 9789351197577, 2016 Edition.
3. Chirag Shah, "A Hands-On Introduction to Data Science", Cambridge University Press, (2020), ISBN: 978-1-108-47244-9
4. Wes McKinney, "Python for Data Analysis", O'Reilly media, ISBN: 978-1-449-31979-3
5. Trent Haunk, "Scikit-learn Cookbook", Packt Publishing, ISBN: 9781787286382

E-Resources:

1. <https://archive.nptel.ac.in/courses/106/106/106106179/>
2. <https://archive.nptel.ac.in/courses/106/106/106106212/>
3. <https://archive.nptel.ac.in/courses/106/105/106105174/>
4. <https://www.analyticsvidhya.com/blog/2021/10/a-comprehensive-guide-to-time-series-analysis/>

List of Assignments (Any 10)

1. Data Wrangling, I Perform the following operations using Python on any open source dataset
 1. Import all the required Python Libraries.
 2. Locate open source data from the web (e.g., <https://www.kaggle.com>). Provide a clear description of the data and its source (i.e., URL of the web site).
 3. Load the Dataset into pandas dataframe.
 4. Data Preprocessing: check for missing values in the data using pandas isnull(), describe() function to get some initial statistics. Provide variable descriptions. Types of variables etc. Check the dimensions of the data frame.
 5. Data Formatting and Data Normalization: Summarize the types of variables by checking the data types (i.e., character, numeric, integer, factor, and logical) of the variables in the data set. If variables are not in the correct data type, apply proper type conversions.
 6. Turn categorical variables into quantitative variables in Python.
2. Data Wrangling II Create an “Academic performance” dataset of students and perform the following operations using Python.
 1. Scan all variables for missing values and inconsistencies. If there are missing values and/or inconsistencies, use any of the suitable techniques to deal with them.
 2. Scan all numeric variables for outliers. If there are outliers, use any of the suitable techniques to deal with them.
 3. Apply data transformations on at least one of the variables. The purpose of this transformation should be one of the following reasons: to change the scale for better understanding of the

variable, to convert a non-linear relation into a linear one, or to decrease the skewness and convert the distribution into a normal distribution.

3. Descriptive Statistics - Measures of Central Tendency and variability Perform the following operations on any open source dataset (e.g., data.csv)

1. Provide summary statistics (mean, median, minimum, maximum, standard deviation) for a dataset (age, income etc.) with numeric variables grouped by one of the qualitative (categorical) variable. For example, if your categorical variable is age groups and quantitative variable is income, then provide summary statistics of income grouped by the age groups. Create a list that contains a numeric value for each response to the categorical variable.
2. Write a Python program to display some basic statistical details like percentile, mean, standard deviation etc. of the species of 'Iris-setosa', 'Iris-versicolor' and 'Iris-versicolor' of iris.csv dataset. Provide the codes with outputs and explain everything that you do in this step.

4. Data Analytics I

1. Create a Linear Regression Model using Python/R to predict home prices using Boston Housing Dataset (<https://www.kaggle.com/c/boston-housing>). The Boston Housing dataset contains information about various houses in Boston through different parameters.

5. Data Analytics II

1. Implement logistic regression using Python/R to perform classification on Social_Network_Ads.csv dataset.
2. Compute Confusion matrix to find TP, FP, TN, FN, Accuracy, Error rate, Precision, Recall on the given dataset

6. Data Analytics III

1. Implement Simple Naïve Bayes classification algorithm using Python/R on iris.csv dataset.
2. Compute Confusion matrix to find TP, FP, TN, FN, Accuracy, Error rate, Precision, Recall on the given dataset.

7. Moving Average Methodology implementation.

8. Implementation of Auto-Regressive Model

9. Implementation of Moving Average (Weights – Simple Moving Average)

10. Implement ARIMA in python.

11. Data Visualization I

1. Use the inbuilt dataset 'titanic'. The dataset contains 891 rows and contains information about the passengers who boarded the unfortunate Titanic ship. Use the Seaborn library to see if we can find any patterns in the data.
2. Write a code to check how the price of the ticket (column name: 'fare') for each passenger is distributed by plotting a histogram
3. Plot a box plot for distribution of age with respect to each gender along with the information about whether they survived or not. (Column names: 'sex' and 'age')
4. Write observations on the inference from the above statistics.

Mini Projects – PYTHON/R (Any ONE Mini Project)

1. Use the following dataset and classify tweets into positive and negative tweets.
<https://www.kaggle.com/ruchi798/data-science-tweets>

2. Develop a movie recommendation model using the scikit-learn library in python. Refer dataset https://github.com/rashida048/Some-NLP-Projects/blob/master/movie_dataset.csv
3. Use the following covid_vaccine_statewise.csv dataset and perform following analytics on the given dataset https://www.kaggle.com/sudalairajkumar/covid19-inindia?select=covid_vaccine_statewise.csv
 - a) Describe the dataset
 - b) Number of person's state wise vaccinated for first dose in India
 - c) Number of person's state wise vaccinated for second dose in India
 - d) Number of Males vaccinated
 - e) Number of females vaccinated

**Vidya Pratishthan's
Kamalnayan Bajaj Institute of Engineering and Technology, Baramati
(Autonomous Institute)**

AI24212- Database Management System

Teaching Scheme: Theory: 3 Hours/Week Practical: 2 Hour/Week	Credits 04	Examination Scheme: Activity Marks: 10 Marks In Sem: 30 Marks End Sem: 60 Marks Practical: 30 Marks
---	-----------------------------	--

Prerequisites: Discrete Mathematics , Data Structures and Algorithms

Course Objectives:

- To understand the fundamental concepts of database systems.
- To learn Database query language.
- To understand the basic issues of transaction processing and concurrency control.
- To learn unstructured data management.

Course Outcomes (COs): The students will be able to learn:

CO1: Visualize and build your database foundation with the ER model.

CO2: Transform raw data into meaningful insights with query languages.

CO3: Apply proven techniques to ensure data integrity and prevent anomalies.

CO4: Implement mechanisms to manage data changes seamlessly in real-time scenarios.

CO5: Use NoSQL databases for processing unstructured data

CO6: Understand databases connectivity

Course Contents

Unit I: Introduction to Database Management Systems and ER Model (06 Hours)

Introduction: Data, Types of Data, Database, Types of Database, Purpose of Database Systems, Database-System Applications, View of Data, Data Independence, Database System Structure.

ER Model: Entity, Attributes, Relationships, Constraints, Keys, Design Process, Entity-Relationship Model, Design Issues, Extended E-R Features, Converting ER and EER diagram into tables.

Unit II: SQL and PL/SQL (06 Hours)

Introduction to SQL: Database Languages ,Data Types and Literals, DDL, DML, DCL, TCL, SQL Operators, Tables: Creating, Modifying, Deleting, Updating, **SQL DML Queries:** SELECT Query and clauses, Index and Sequence in SQL, **Views:** Creating, Dropping, Updating using Indexes, Set Operations, Predicates and Joins, SQL Functions, Nested Queries, **PL/SQL:** Stored Procedures & Functions, Cursors, Triggers, Assertions, Roles and Privileges

Unit III: Normalizations (06 Hours)

Relational Model: Basic concepts, Attributes and Domains, CODD's Rules. Relational Integrity: Domain, Referential Integrities, Enterprise Constraints. **Database Design:** Features of Good Relational Designs, Normalization, Atomic Domains and First Normal Form, Decomposition using Functional Dependencies, Algorithms for Decomposition, 2NF, 3NF, BCNF and 4NF.

Unit IV: Transaction Management (06 Hour)

Introduction to Database Transaction, Transaction states, ACID properties, Concept of Schedule, Serial Schedule. **Serializability:** Conflict and View, Cascaded Aborts, Recoverable and Nonrecoverable Schedules. **Concurrency Control:** Lock-based, Time-stamp based Deadlock handling. Recovery methods: Shadow-Paging and Log-Based Recovery, Checkpoints. **Log-Based Recovery:** Deferred Database Modifications and Immediate Database Modifications.

Unit V: NoSQL Databases (06 Hours)

Introduction to Distributed Database System- Advantages, disadvantages, CAP Theorem. **NoSQL Database:** Introduction, need, Features, Types of NoSQL Database, BASE Properties, **MongoDB (with syntax and usage):** CRUD Operations, Indexing, Aggregation.

Unit VI: Database Connectivity (06 Hours)

Introduction: Database connectivity, Drivers, Steps of Database Connectivity, Database Connectivity with MySQL, DriverManager class, Connection interface, PreparedStatement interface, ResultSet interface, ResultSetMetaData Interface, DatabaseMetaData interface, Batch Processing.

Text Books:

1. Silberschatz A., Korth H., Sudarshan S., "Database System Concepts", McGraw Hill Publishers, 7th Edition, 2020 ISBN 978-0-07-802215-9.
2. Ivan Bayross, "SQL, PL/SQL the Programming Language of Oracle", BPB Publications, 2014 ISBN: 9788176569644.
3. Connally T, Begg C., "Database Systems- A Practical Approach to Design, Implementation and Management", Pearson Education, 5th Edition, 2010, ISBN 81-7808-861-4.
4. Pramod J. Sadalage and Martin Fowler, "NoSQL Distilled", Addison Wesley, ISBN 10: 0321826620, 2013, ISBN 13:978-0321826626.

Reference Books:

1. Ramez Elmasri , Shamkant B. Navathe "FUNDAMENTALS OF Database Systems SEVENTH EDITION" ISBN-13: 978-0-13-397077-7, 2017.
2. R.P. Mahapatra, Database Management Systems,, Khanna Book Publishing 2016

E-Resources:

1. <https://archive.nptel.ac.in/courses/106/105/106105175/>

List of Assignments

1. Draw ER diagrams for different schemas & Convert them into tables (Assume any suitable schema). Display constraints.
2. SQL Queries: Design and Develop SQL DDL statements which demonstrate the use of SQL objects such as Table, View, Index, Sequence, Synonym, different constraints etc.
3. SQL Queries: Write at least 10 SQL queries on the suitable database application using SQL DML statements.
4. SQL Queries – All types of Join, Sub-Query and View: Write at least 10 SQL queries for suitable database application using SQL DML statements.
5. Unnamed PL/SQLcode block: Use of Control structure and Exception handling is mandatory
6. Write a PL/SQL block of code using parameterized Cursor that will merge the data available in the newly created table N_Roll_Call with the data available in the table O_Roll_Call. If the data in the first table already exists in the second table then that data should be skipped.
7. Design and Develop MongoDB Queries using CRUD operations. (Use CRUD operations, SAVE method, logical operators etc.).
8. MongoDB – Aggregation and Indexing: Design and Develop MongoDB Queries using aggregation and indexing with suitable example using MongoDB.
9. Exporting and Importing data: Design and develop SQL DML statements to demonstrate exporting/Importing tables to external files of different file formats ex. CSV, XLSX, TXT, etc.
10. Database Connectivity: Write a program to implement MySQL/Oracle database connectivity with any front end language to implement Database navigation operations (add, delete, edit etc.)

**Vidya Pratishthan's
Kamalnayan Bajaj Institute of Engineering and Technology, Baramati
(Autonomous Institute)**

AI24213: Operating System

Teaching Scheme: Theory: 3 Hours/Week Practical: 2 Hour/Week	Credits 04	Examination Scheme: Activity Marks: 10 Marks In Sem: 30 Marks End Sem: 60 Marks Practical: 30 Marks
---	-----------------------------	--

Prerequisites: Programming and Problem Solving

Course Objectives:

- To understand the fundamental concepts of operating systems, including their functions, evolution, and types.
- To study process management techniques, such as scheduling algorithms, inter-process communication, and multithreading.
- To analyze synchronization mechanisms and deadlock handling strategies for concurrent execution in operating systems.
- To explore memory management techniques, including paging, segmentation, and virtual memory concepts.
- To learn about I/O management and file system structures, focusing on disk scheduling and file organization.
- To introduce Linux operating system concepts, including kernel structure, process management, and shell utilities.

Course Outcomes (COs): The students will be able to:

CO1: Understand the fundamental functions, types, and design considerations of operating systems.

CO2: Analyze process scheduling techniques, inter-process communication, and multithreading models.

CO3: Apply synchronization techniques to ensure mutual exclusion and prevent deadlocks in concurrent systems.

CO4: Explain memory management techniques, including virtual memory and page replacement algorithms.

CO5: Describe disk scheduling policies, file system structures, and file management techniques.

CO6: Explore Linux system structure, process management, and shell utilities for efficient system operations.

Course Contents

Unit No.: I Fundamental Concepts of Operating system

Operating system functions and characteristics, historical evolution of operating systems, issues in operating system design, User's view of the OS, Types of OS: Batch, time sharing, multiprogramming, distributed, network and real-time systems, Operating-System Services, Types of System Calls, System Programs.

Unit No.: II Process Management

Process concept, Process Control Block(PCB), Process Operations, Process Scheduling: Types of process schedulers, Types of scheduling: Preemptive, Non preemptive. Scheduling algorithms: FCFS, SJF, RR, Priority, Inter process Communication (IPC). Threads: multithreaded model, implicit threads, threading issues

Unit No: III Synchronization and Deadlock

Principles of Concurrency, Requirements for Mutual Exclusion, Mutual Exclusion: Hardware Support, Operating System Support (Semaphores and Mutex), Programming Language Support (Monitors). Classical synchronization problems: Readers/Writers Problem, Producer and Consumer problem, Inter-process communication (Pipes, shared memory system), Deadlock: Deadlock Characterization, Methods for Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, Recovery from Deadlock

Unit IV: Memory Management

Memory management: Background, Types of memory Logical Versus Physical Address space, Swapping Contiguous Allocation, Virtual Memory: Background, Demand paging, Page replacement, Page replacement algorithms, Allocation of frames, Thrashing (Only concept)

Unit V: I/O and File System

I/O Management: I/O Devices, Organization of I/O function, I/O Buffering, Disk Scheduling, Disk Scheduling policies like FIFO, LIFO, STTF, SCAN, C-SCAN **File Management:** File concept , File support, Access methods ,Allocation methods ,Directory systems ,File protection ,Free space management

Unit VI: Linux

Overview Of Linux - Linux Goals, Interfaces to Linux, The Shell, Linux Utility Programs, Kernel structure, Processes in Linux – Process management system calls in Linux, Implementation of process and threads in Linux, Process scheduling Linux, Booting

Text Books:

1. Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, Operating System Concepts, WILEY, ISBN978-1-118-06333-0, 9th Edition
2. William Stallings, Operating System: Internals and Design Principles, Prentice Hall, ISBN-10: 0-13-380591-3, ISBN-13: 978-0-13-380591-8, 8th Edition
3. Andrew S. Tanenbaum & Herbert Bos, Modern Operating System, Pearson, ISBN-13: 9780133592221, 4th Edition
4. Unix Shell Programming – Yashwant Kanetkar, BPB publications.

List of Assignments

1. Write a series of BASH shell commands for common system administration tasks, including file management, process control, disk usage monitoring, and system information retrieval.
2. Implement a program using `fork()`, `exec()`, and `wait()` system calls to create a child process, execute a new program in the child, and synchronize the parent process to wait for the child to complete.
3. Implement preemptive (Round Robin) and non-preemptive (FCFS, SJF, Priority) CPU scheduling algorithms, calculating and displaying waiting time, turnaround time, and CPU utilization for each.
4. Implement a simulation of virtual memory using demand paging, and apply page replacement algorithms such as FIFO (First-In-First-Out), LRU (Least Recently Used) and optimal to handle page faults and minimize them.
5. Implement various disk scheduling algorithms, including FIFO (First-Come-First-Serve), SSTF (Shortest Seek Time First), SCAN, and C-SCAN, and evaluate their performance based on average seek time.
6. Build a basic file system that supports file creation, reading, writing, and deletion using low-level system calls such as `open()`, `read()`, `write()`, and `close()`.
7. Implement the Banker's algorithm to avoid deadlock by analysing resource allocation and safely granting resource requests.
8. Write a program using semaphores to implement the Readers-Writers problem, ensuring mutual exclusion while allowing multiple readers and one writer to access a shared resource concurrently.
9. Write a C program to demonstrate mutual exclusion using mutex locks, solving the critical section problem.
10. Write a C program to dynamically adjust the priority of a process using the `nice()` system call and observe the impact on scheduling.

**Vidya Pratishthan's
Kamalnayan Bajaj Institute of Engineering and Technology, Baramati
(Autonomous Institute)**

AI242214- Community Engagement Project

Teaching Scheme: PR: 4 Hours/Week	Credits 02	Examination Scheme: Activity: 10 Marks TW: 30 Marks OR: 30 Marks
--	-----------------------------	---

Prerequisites: Foundational Knowledge in Programming languages, Data handling, and Project Management Principles.

Course Objectives:

- To Encourage students to develop critical thinking and problem-solving skills by exploring and proposing solutions to real-world and social problems.
- To Enable students to evaluate alternative approaches and justify the selection of the most appropriate tools and methods for problem-solving.
- To Immerse students in meaningful and real-world learning experiences.
- To Offer opportunities for students to work either individually or in groups, fostering teamwork, professionalism, and collaboration.

Course Outcomes (COs): The students will be able to learn:

CO1: Identify and address real-world problems based on societal needs.

CO2: Explore different solutions and approaches, critically assessing their feasibility and effectiveness, and select the most suitable one for the problem at hand.

CO3: Analyze and synthesize identified problems by applying relevant technological principles, methodologies, and tools.

CO4: Evaluate the proposed solutions against defined criteria to assess their effectiveness and appropriateness for the problem.

Course Contents

Preamble:

Community Engineering Project/Field Based is an instructional approach that enables students to develop both knowledge and skills through engaging, real-world challenges and problems. Rather than just completing isolated tasks, **Community Engineering Project** encourages students to investigate, respond to, and solve authentic, complex problems with sustained effort and attention. Essentially, Community Engineering Project is “learning by doing,” where students actively engage in the process of inquiry and problem-solving.

In today's modern world, success is often measured by the ability to complete projects effectively, which is why it is essential to prepare students for a world driven by projects. Through this approach, students not only acquire academic knowledge but also develop critical thinking, collaboration, and problem-solving abilities.

Community Engineering Project also redefines the role of the teacher, shifting from a traditional lecture-based model to a more dynamic role as a mentor. While still imparting knowledge, teachers in a Community Engineering Project setting serve as facilitators who guide and support students in the collaborative process of knowledge transfer and development.

The Community Engineering Project model centers on an open-ended question, challenge, or problem, requiring students to conduct research and work toward a solution. Throughout the process, students will present their findings, research methods, and results, demonstrating the depth of their learning.

Successful Community Engineering Project implementation demands consistent mentoring from faculty throughout the semester to ensure the students' ideas and projects are progressing effectively. Each batch of students should be divided into smaller sub-groups of 3 to 4 members. Students will select real-life problems or complex assignments for their projects, and these will span the entire semester.

Project Execution Guidelines

1. Group Formation:

- Each group will consist of **3-4 students**.
- A **mentor/guide** will be assigned to each group.

2. Mentor's Role:

- The mentor will **monitor** the group's progress, providing guidance and support.
- The mentor will ensure the group stays on track to complete the project successfully.

Selection of Project/Problem:

The selection of a community project or problem will be guided by the following criteria to ensure relevance, feasibility, and impact:

1. **Community Needs Assessment:** Identify real-world challenges faced by the community through surveys, interviews, or consultations with stakeholders.
2. **Interdisciplinary Relevance:** Ensure the project allows for the integration of tools, data analytics, and software applications across multiple disciplines.
3. **Ethical and Sustainable Impact:** Select projects that align with ethical standards and promote long-term sustainability.
4. **Feasibility and Resources:** Assess the availability of necessary resources, technical feasibility, and team expertise to implement the project effectively.
5. **Innovative and Scalable Solutions:** Prioritize challenges that can be solved through innovation, with a focus on solutions that have the potential for wide-scale application and scalability.
6. **Collaboration Opportunities:** Choose projects that encourage teamwork and engagement with community members, organizations, or local authorities.

Expected Project Domains

- Healthcare:
- Education:
- Agriculture:
- Social Welfare:
- Smart Cities:

Evaluation and Continuous Assessment

To ensure systematic progress and accountability, all activities must be recorded consistently. Regular assessments should be conducted, and proper documentation must be maintained at the college level by both students and mentors through the **Community Engineering Project/Field Project (Field-Based Learning) workbook**. Additionally, a **Continuous Assessment Sheet (CAS)** should be kept by mentors, departments, and institutions to track student performance and project progress.

Assessment Criteria and Weightage:

1. Idea Inception & Awareness (10%)

- Consideration of environmental, social, ethical, safety, and legal factors.
- Clarity and feasibility of the chosen problem.

2. Problem-Solving & Project Outcomes (40%)

- Effectiveness of the solution in addressing the identified problem.
- Individual and team contributions to project development.
- Integration of tools, data analytics, and software applications.

3. Documentation (15%)

- Requirement gathering, design, and system modeling.
- Implementation, execution, and use of technology.
- Quality and completeness of the final project report and supporting documents.

4. Demonstration (20%)

- Clarity, organization, and effectiveness of the presentation.
- User interface design, functionality, and usability.

5. Contest Participation / Publication (15%)

- Engagement in competitions, conferences, or research paper publication.

The **Field Based Learning workbook** serves as a crucial tool for students, mentors, and project coordinators, ensuring documentation of work progress. It fosters **accountability, punctuality, technical writing skills, and workflow management**, providing a structured approach to project execution and assessment.

Project Milestones & Deliverables

Week	Task	Deliverables
Week 1-2	Problem identification & proposal submission	Problem Statement Document
Week 3-5	Data collection & preprocessing	Data Report
Week 6-8	Model Development & Testing	Model Report
Week 9-10	Implementation & Prototyping	Working Prototype
Week 11-12	Social Impact Assessment & Field Testing	Evaluation Report
Week 13-14	Final Presentation & Documentation	Project Report & Demo

Text Books:

1. A new model of problem based learning. By Terry Barrett. All Ireland Society for higher education (AISHE). ISBN:978-0-9935254-6-9; 2017
2. Problem Based Learning. By Mahnazmoallem, woei hung and Nada Dabbagh, Wiley Publishers. 2019.
3. Stem Project based learning and integrated science, Technology, Engineering and mathematics approach. By Robert Capraro, Mary Margaret Capraro

Reference Books:

1. De Graaff E, Kolmos A., red.: Management of change: Implementation of problem-based and project-based learning in engineering. Rotterdam: Sense Publishers. 2007.
2. Gopalan, "Project management core text book", 2 Indian Edition
3. James Shore and Shane Warden, "The Art of Agile Development"

**Vidya Pratishthan's
Kamalnayan Bajaj Institute of Engineering and Technology, Baramati
(Autonomous Institute)**

AI24215- VSEC- Python for Visual AI

Teaching Scheme:
Tutorial: 1 Hours/Week
Practical: 2 Hour/Week

Credits
02

Examination Scheme:
Activity Marks: 10 Marks
Term-Work: 30 Marks
Practical: 30 Marks

Prerequisites: Python Fundamentals

Course Objectives:

- To understand and identify insights of Image Processing
- To learn data manipulation techniques for big data
- To learn usage of platforms for building Machine Learning applications
- To learn designing of basic interface components for Python Automation

Course Outcomes (COs): The students will be able to:

CO1: Demonstrate the image analysis through OpenCV

CO2: Learn and Analyze efficiency in big data manipulation

CO3: Construct AI applications using Machine Learning libraries like scikit-learn, tensorflow etc

CO4: Build an efficient interface parsing the XML, HTML files

Course Contents

Unit I Image Processing

(04 Hrs)

Introduction to digital image processing, Python Programming essentials for image processing, Image Input–Output and Visualization, Basic Image Operations, Grayscale Image Processing, Color Image Processing, Image Filtering and Smoothing, Introduction to Edge Detection, Image Quality Assessment Tools – PSNR, SSIM, Entropy and Coefficient Correlation Analysis.

Tools and Libraries Covered: - NumPy, OpenCV (cv2), Pillow (PIL), Matplotlib

Unit II Machine Learning

(05 Hrs)

Introduction to Machine Learning, Python Libraries for Machine Learning, Data Preprocessing and Feature Engineering, Supervised Learning – Classification, Supervised Learning – Regression, Unsupervised Learning, Model Evaluation and Validation, Introduction to Image-Based Machine Learning, Image Dataset Preparation, Feature Extraction from Images

Tools and Libraries Covered: NumPy, Pandas, Matplotlib / Seaborn, Scikit-learn, OpenCV

Unit III Web Data Extraction and Automation

(05 Hrs)

Introduction to Web Scraping, Web Fundamentals for Scraping, Python Libraries for Web Scraping, HTML Parsing with BeautifulSoup, Data Extraction and Storage, Handling Real-World Scraping Challenges, Introduction to Web Crawling with Scrapy, Data Pipelines and Middleware in Scrapy, Scraping Dynamic Content

Tools and Libraries Covered: Requests, BeautifulSoup, Scrapy, CSV / JSON

Unit IV Intelligent Automation

(04 Hrs)

Introduction to Automation and Intelligent Systems, Python for Task and Process Automation, Model Deployment and Inference Automation, Object Detection and Tracking, Rule-Based + ML-Based Hybrid Systems, Event-Driven Automation Systems, Introduction to Human–Machine Interfaces

Tools and Libraries Covered: OpenCV, Scikit-learn, Pandas, OS, shutil, schedule, Tkinter / Streamlit

Text Books:

1. Sebastian Raschka, Vahid Mirjalili, “*Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow*”, ISBN 10: 1803240141, ISBN 13: 978-1803240148, 2023
2. **Aurélien Géron**, “*Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow*”, ISBN 10: 1098125975, ISBN 13: 978-1098125974, 2022
3. Ryan Mitchell, “*Web Scraping with Python: Data Extraction from Modern Websites*”, ISBN 10: 1492051365, ISBN 13: 978-1492051367, 2018
4. **Rafael C. Gonzalez, Richard E. Woods**, “*Digital Image Processing*”, ISBN 10: 0133356728, ISBN 13: 978-0133356724, 2018
5. **Prateek Joshi**, “*OpenCV with Python by Example*”, ISBN 10: 1785283936, ISBN 13: 978-1785283932, 2016
6. **Al Sweigart**, “*Automate the Boring Stuff with Python: Practical Programming for Total Beginners*”, ISBN 10: 1593279922, ISBN 13: 978-1593279929, 2020

Reference Books:

1. **Chip Huyen**, “*Designing Machine Learning Systems*”, ISBN 10: 1098107969, ISBN 13: 978-1098107963, 2022
2. **Katharine Jarmul, Richard Lawson**, “*Python Web Scraping: Hands-on data extraction from modern websites*”, ISBN 10: 1787285219, ISBN 13: 978-1787285217, 2018

List of Assignments

1. Convert a color image to grayscale with different methods mentioned below and compare their performances (SSIM, Entropy, PSNR, etc.)
 1. Average Method (Arithmetic Mean)
 2. Lightness Method
 3. Luminosity (Perceptual) Method
 4. Luma Method
2. Build a tool that analyses an image's histogram and automatically adjusts brightness and contrast for a more balanced result in Python using an image processing library. It has to accept the image as input from the user.
3. Implement a DCT-based method to embed a robust, yet imperceptible, digital watermark onto an image to protect proprietary data. Perform the analysis of the method used.
4. An **AgriTech startup** wants to predict whether a farmer should grow **Rice, Wheat, or Maize** based on soil and climate conditions using crop recommendation dataset.
 - 1.Understand features: N, P, K, Temperature, Humidity, Rainfall
 - 2.Define input–output mapping
 3. Identify ML problem type
 4. Perform exploratory data analysis (EDA)
5. Predict **crop yield (tonnes/hectare)** based on rainfall and fertilizer usage with different models like linear regression, ridge regression and random forest regressor on the crop recommendation dataset.
6. You have been given a rainfall dataset of different districts in India; your task is to apply unsupervised machine learning concepts like K-means and hierarchical methods to group the different districts to apply the common policy.
7. An **Agri-analytics company** wants to collect **daily vegetable prices** from government portals.<https://agmarknet.gov.in/>

8. A startup wants **historical rainfall data** stored for analysis from <https://www.data.gov.in/resources/rainfall-india> Scrape tabular rainfall data, Clean missing values, Store data in: CSV and Reload data for analysis
9. An organisation wants to **automate daily reports** from CSV files. Automate data loading & cleaning, Generate summary reports, Save output as CSV / PDF, and schedule tasks using Python (cron / task scheduler)
10. Deploy a crop recommendation ML model and automate predictions, and perform the tasks like Train ML model, save model using joblib, create inference script, and automating predictions from new input files.